Cleavage of an acyclic P_{5} ligand into $P_{4} \mid P_{1}$ and $P_{3} \mid P_{2}$ molecular building blocks ${ }^{1}$

Otto J. Scherer *, Thomas Mohr, Gotthelf Wolmershäuser ${ }^{2}$
Department of Chemistry, University of Kaiserslautern, 67663 Kaiserslautern, Germany

Received 2 April 1996; accepted 31 May 1996

Abstract

The cothermolysis of $\left[\mathrm{Cp}^{*} \mathrm{FeP}_{5}\right](\mathbf{1})$ and $\left[\mathrm{Cp}^{\prime \prime} \mathrm{Ta}(\mathrm{CO})_{4}\right](\mathbf{2}), \mathrm{Cp}^{\prime \prime}=\mathrm{C}_{5} \mathrm{H}_{3}{ }^{\mathrm{A}} \mathrm{Bu}_{2}-1,3$, affords the trinuclear cubane-like compounds $\mathbf{3}$ in the form of the equilibrium mixture $\left[\left(\mathrm{Cp}{ }^{*} \mathrm{Fe}\right)\left(\mathrm{Cpp}^{\prime \prime} \mathrm{Ta}\right)_{2} \mathrm{P}_{5}\right](\mathbf{3 a}) \rightleftarrows\left[\left(\mathrm{Cp}{ }^{*} \mathrm{Fe}\right)\left(\mathrm{Cp}^{\prime \prime} \mathrm{Ta}\right)_{2}\left(\mathrm{P}_{4}\right)\left(\mathrm{P}_{1}\right)\right](\mathbf{3 b})$ and small amounts of the P_{n} complexes $\left[\left(\mathrm{Cp}{ }^{*} \mathrm{Fe}\right)\left(\mathrm{Cp}^{\prime \prime} \mathrm{Ta}\right)\left(\mathrm{P}_{5}\right)\right](4),\left[\left(\mathrm{Cp}^{\prime \prime} \mathrm{Ta}\right)_{3}\left(\mathrm{P}_{4}\right)\left(\mathrm{P}_{2}\right)\right](\mathbf{5})$, and $\left[\left(\mathrm{Cp}{ }^{\prime \prime} \mathrm{Ta}\right)_{4}\left(\mathrm{P}_{3}\right)_{2}\right](6)$. Further reaction of 3a,b with $\left[\mathrm{Mo}(\mathrm{CO})_{5}(\mathrm{thf})\right]$ gives exclusively $\left[\left(\mathrm{Cp}^{*} \mathrm{Fe}\right)\left(\mathrm{Cp}^{\prime \prime} \mathrm{Ta}\right)_{2}\left(\mathrm{P}_{5}\right)\left\{\mathrm{Mo}(\mathrm{CO})_{5}\right\}\right]$ (7). The skeleton of 7 consists of an FeP_{5} six-membered ring capped by two $\left\{\mathrm{Cp}^{\prime \prime} \mathrm{Ta}\right\}$ fragments. The formal insertion of a $\left\{\mathrm{Cp}^{\prime \prime} \mathrm{Ta}(\mathrm{CO})_{2}\right\}$ unit into the intact P_{5} chain of 4 provides $\left[\left(\mathrm{Cp}{ }^{*} \mathrm{Fe}\right)\left(\mathrm{Cp}{ }^{\prime \prime} \mathrm{Ta}\right)\left\{\mathrm{Cp}^{\prime \prime}\left(\mathrm{OC}_{2} \mathrm{Ta}^{2}\right\}\left(\mathrm{P}_{3}\right)\left(\mathrm{P}_{2}\right)\right]\right.$ (9), a trinuclear species where the intact P_{5} chain of the educt 4 has been cleaved into a P_{3} and a P_{2} ligand. 7 and 9 have been further characterized by X -ray crystal structure analyses.

Kevwords: Iron; Tantalum; Phosphorus; Cage compound; Cluster; Cyclopentadienyl

1. Introduction

Little is known about the selective cleavage of cyclic or acyclic P_{n} ligands ($n=3-6$ for example) to ringopened or smaller fragments (for reviews see Ref. [1]). The cyclo- P_{3} ligand of the cationic complexes $\left[\mathrm{LNi}\left(\mathrm{P}_{3}\right)\right]^{+}$and $\left[\mathrm{LCo}\left(\mathrm{P}_{3} \mathrm{Et}\right)\right]^{+}$can be cleaved by reacting it with, for example, $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]$ [2] or $\mathrm{Co}^{2+} \mid \mathrm{L}\left(\mathrm{L}=\mathrm{MeC}\left(\mathrm{CH}_{2} \mathrm{PPh}_{2}\right)_{3}\right)$ [3]. A strong kite-like distortion $\left(\mathrm{P}_{1} \mid \mathrm{P}_{3}\right)$ of the P_{4} ring was observed for $\left[\mathrm{Cp}^{\prime \prime} \mathrm{Co}\left(\mathrm{P}_{4}\right)\left\{\left(\mathrm{CoCp}^{\prime \prime}\right)_{2}(\mu-\mathrm{CO})\right\}\right][4]$; in contrast, the photolysis of $\left[\mathrm{Cp}^{\prime \prime} \mathrm{Fe}\left(\right.\right.$ cyclo- $\left.\left.\mathrm{P}_{4}\right)\left\{\mathrm{Fe}(\mathrm{CO})_{2} \mathrm{Cp}^{\prime \prime}\right\}\right]$ gives $\left[\left(\mathrm{Cp}^{\prime \prime} \mathrm{Fe}\right)_{2}\left(\mathrm{P}_{4}\right)\right]$ with a P_{4} chain [5]. Finally, the cothermolysis of the sandwich complexes $\left[\mathrm{Cp}^{*} \mathrm{FeP}_{5}\right]$ and $\left[\mathrm{Cp}^{\prime \prime} \mathrm{Ta}(\mathrm{CO})_{4}\right]$ affords $\left[\mathrm{Cp}^{*} \mathrm{FeP}_{5} \mathrm{TaCp}^{\prime \prime}\right]$, where one $\mathrm{P}-\mathrm{P}$ bond of the cyclo $-\mathrm{P}_{5}$ educt is broken [6]. Interestingly, the P_{6} middle deck of the 26 valence-electron triple decker $\left[\left(\mathrm{Cp}^{\prime \prime} \mathrm{Nb}\right)_{2}\left(\mathrm{P}_{6}\right)\right], \mathrm{Cp}^{\prime \prime}=\mathrm{C}_{5} \mathrm{H}_{3}{ }^{\mathrm{B}} \mathrm{Bu}_{2}-1,3$, is distorted on the way to two P_{3} units [7].

[^0]
2. Results and discussion

The thermolysis of $\mathbf{1}$ and 2 for 6 h in boiling decalin gives, besides small amounts (ca. 3%) of 4 [6], 5 [8], and 6 [9], in a yield of 42% a mixture of the cubanes 3a,b with an FeTa ${ }_{2} \mathrm{P}_{5}$-framework (Scheme 1). Column chromatography followed by recrystallization leads to a black-brown crystalline powder, which is slightly soluble in hexane and readily soluble in toluene.

The equilibrium $\left[\left(\mathrm{Cp}^{*} \mathrm{Fe}\right)\left(\mathrm{Cp}^{\prime \prime} \mathrm{Ta}\right)_{2}\left(\mathrm{P}_{5}\right)\right] \quad(3 \mathrm{a}) \rightleftarrows$ $\left[\left(\mathrm{Cp}^{*} \mathrm{Fe}\right)\left(\mathrm{Cp}^{\prime \prime} \mathrm{Ta}\right)_{2}\left(\mathrm{P}_{4}\right)\left(\mathrm{P}_{1}\right)\right](\mathbf{3 b})$ can be shifted quantitatively to the left side (cubane 3a) on further coordination of $\mathbf{3 a}, \mathbf{b}$ to an $\left\{\mathrm{Mo}(\mathrm{CO})_{5}\right\}$ fragment (compound 7 , Scheme 1).

2.1. NMR data of the multinuclear P_{5} complexes $\mathbf{3 a}, \boldsymbol{b}$ and 7

Table 1 summarizes the ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR data of the trinuclear P_{5} complexes $\mathbf{3 a , b}$ and 7.

Temperature dependent ${ }^{1} \mathrm{H}$ NMR studies [10] on compound 3 in $\mathrm{C}_{6} \mathrm{D}_{6}$ show that there exists an equilibrium between two isomers ($\mathbf{3 a} \rightleftarrows \mathbf{3 b} ; 298 \mathrm{~K} ; \mathbf{3 a}: \mathbf{3 b}$ 1:1.45). Two sets of magnetically different $\mathrm{Cp}^{\prime \prime}$ ligands, ratio $1: 2: 18$, in a symmetric surrounding are observed

Scheme 1.
for 3a and $7\left(\left\{\mathrm{Mo}(\mathrm{CO})_{5}\right\}\right.$ adduct to $\left.\mathbf{3}\right)$. The two $\mathrm{Cp}^{\prime \prime}$ ligands of $\mathbf{3 b}$ are related through a mirror plane as the only element of symmetry, and thus show a 2:2:2:18:18 splitting pattern. $\mathrm{Cp}{ }^{*} \mathrm{Fe}(15 \mathrm{H})$ gives a singlet for all three complexes (Table 1).

The ${ }^{31} \mathrm{P}$ NMR spectrum of $\mathbf{3 a}$ consists of an $\mathrm{AA}^{\prime} \mathrm{MXX}^{\prime}$ spin system which is in accordance with a symmetric P_{5} chain. The lowest chemical shift (416.3 ppm , Table 1) was found for the 'terminal' P atoms $\mathbf{P}_{\mathrm{AA}^{\prime}}$. Interestingly, compounds $\mathbf{3 a}$ and $\mathbf{7}$ ($\left\{\mathrm{Mo}(\mathrm{CO})_{5}\right\}$ adduct to 3a) do not differ significantly with respect to coupling constants and chemical shifts (Table 1). For 3b four signal groups can be detected in the ${ }^{31} \mathrm{P}$ NMR spectrum. The four phosphorus atoms form an isotetraphosphide $\mathrm{P}_{\mathrm{M}}-\mathrm{P}_{\mathrm{X}}\left(\mathrm{P}_{\mathrm{N}}\right)_{2}$ unit (P_{4} tetrahedron, where three $\mathrm{P}-\mathrm{P}$ bonds are cleaved, cf. Fig. 1). It is worthwhile mentioning the large chemical shift range of the isomer 3b (776.8, P_{A} to $-313.3, \mathrm{P}_{\mathrm{X}}, \Delta=$ $1090 \mathrm{ppm} ; 3 \mathrm{3a}, \Delta=305 \mathrm{ppm}$, Table 1). P_{A} is a single phosphorus atom surrounded by two $\left\{\mathrm{Cp}^{\prime \prime} \mathrm{Ta}\right\}$ and one $\left\{\mathrm{Cp}^{*} \mathrm{Fe}\right\}$ fragment. On the basis of the X-ray structure results for compound 7 (Section 2.3) the cubane-like

B (3b)

Fig. 1. Proposed molecular structures for the isomers 3a,b.
polyhedra A (3a) and B (3b) of Fig. 1 are in good agreement with the NMR data.

Less likely is an isomer of $\mathbf{3}$ with a Ta-Ta edge in the distorted cube. As derived from the NMR data the proposed structure (Fig. 1) with the two Ta atoms in the position of a body diagonal appears most convincing.

3a shows an interesting parallel to $\left[\left(\mathrm{Cp}^{*} \mathrm{Ti}\right)_{2}\left(\mu-\eta^{3: 3}\right.\right.$ $\left.P_{6}\right)$], where a flattened P_{6} chair is capped by two $\left\{C p^{*} \mathrm{Ti}\right\}$ fragments [11]. A P_{5} resembling $\mathbf{3 b}$ with a P_{1} and a tripodal P_{4} (trigonal pyramidal) ligand is found in $\left[\left(\mathrm{Cp}{ }^{*} \mathrm{Ni}\right)_{3}\left(\mathrm{P}_{4}\right)\left(\mathrm{P}_{1}\right)\right]$, a complex with a distorted $\mathrm{Ni}_{3} \mathrm{P}_{5}$ cube skeleton [12].

2.2. Cleavage of a P_{5} chain ligand into a P_{3} and a P_{2} fragment

Room temperature reaction of $\left[\left(\mathrm{Cp}^{*} \mathrm{Fe}\right)\left(\mathrm{Cp}^{\prime \prime} \mathrm{Ta}\right)\left(\mathrm{P}_{5}\right)\right]$ (4) and $\left[\mathrm{Cp}^{\prime \prime} \mathrm{Ta}(\mathrm{CO})_{2}(\operatorname{cod})\right](8)$ afforded the novel $\mathrm{P}_{3} \mid \mathrm{P}_{2}$

Scheme 2.

Table 1
${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR data for the P_{5} complexes $3 \mathrm{a}, \mathrm{b}$ and 7 (in $\mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}, \delta$ in ppm. J in Hz)

$\left[\left(\mathrm{Cp}^{*} \mathrm{Fe}\right)\left(\mathrm{Cp}^{\prime \prime} \mathrm{Ta}\right)_{2}\left(\mathrm{P}_{5}\right)\right] \mathbf{3 a}$	$\left[\left(\mathrm{Cp}{ }^{*} \mathrm{Fe}\right)\left(\mathrm{Cp}^{\prime \prime} \mathrm{Ta}\right)_{2}\left(\mathrm{P}_{4}\right)\left(\mathrm{P}_{1}\right)\right]$ 3b	$\left[\left(\mathrm{Cp}^{*} \mathrm{Fe}\right)\left(\mathrm{Cp}^{\prime \prime} \mathrm{Ta}\right)_{2}\left(\mathrm{P}_{5}\right)\left(\mathrm{Mo}(\mathrm{CO})_{5}\right]\right] 7$
$\delta^{1} \mathrm{H}$		
6.42 (d, 2H, $J=2.3)$	5.74 (m, 2H)	6.79 (m, 1H)
6.21 (m, 1H)	5.07 (m, 2H)	6.25 (d, 2H, $J=2.2)$
5.34 (m, 2H)	4.15 (m, 2H)	5.34 (m, 2H)
$4.54(\mathrm{t}, 1 \mathrm{H}, J=2.3)$	1.99 (s, 18H)	5.32 (m, 1H)
1.69 (s, 18H)	1.44 (s, 15H)	1.74 (s, 15H)
1.49 (s, 15H)	1.01 (s, 18H)	1.36 (s, 18H)
1.31 (s, 18H)		1.32 (s, 18H)
$\delta^{31} \mathrm{P}$		
$\mathrm{AA}^{\prime} \mathrm{MXX}$ ' spin system	$\mathrm{AMN}_{2} \mathrm{X}$ spin system	$\mathrm{AA}^{\prime} \mathrm{MXX}^{\prime}$ spin system
$\mathrm{RMS}=0.40{ }^{\text {a }}$	RMS $=0.41$	RMS $=0.17$
$416.3\left(\mathrm{P}_{\mathrm{A}}, \mathrm{~m}, 2 \mathrm{P} ;{ }^{\prime} J(\mathrm{AX})=-292.2\right.$	$776.8\left(\mathrm{P}_{\mathrm{A}}, \mathrm{d}, 1 \mathrm{P} ;{ }^{2} J(\mathrm{AM})=11.1\right)$	$384.8\left(\mathrm{P}_{\mathrm{A}}, \mathrm{~m}, 2 \mathrm{P} ;{ }^{\prime} J(\mathrm{AX})=-312.8\right.$
$\left.{ }^{2} J(\mathrm{AM})=36.7\right)$	$332.9\left(\mathrm{P}_{\mathrm{M}}, \mathrm{dd}, 1 \mathrm{P} ;{ }^{\prime} J(\mathrm{MX})=-318.0\right)$	$\left.{ }^{2} J(\mathrm{AM})=25.3\right)$
$\begin{aligned} & 218.6\left(\mathrm{P}_{\mathrm{M}}, ‘ ‘ t \mathrm{t} ’, 1 \mathrm{P} ;{ }^{1} J(\mathrm{MX})=-252.6,\right. \\ & \left.{ }^{2} J\left(\mathrm{AX}^{\prime}\right)=-15.5\right) \end{aligned}$	$267.3\left(\mathrm{P}_{\mathrm{N}}, \mathrm{d}, 2 \mathrm{P} ;{ }^{1} J(\mathrm{NX})=-218.3\right)$	$\begin{aligned} & 233.5\left(\mathrm{PM}, ‘ \mathrm{tt} \text { ', } 1 \mathrm{P} ;{ }^{1} J(\mathrm{MX})=-284.2,\right. \\ & \left.{ }_{2} J\left(\mathrm{AX'}^{\prime}\right)=-7.9\right) \end{aligned}$
$110.9\left(\mathrm{P}_{\mathrm{X}},{ }^{\prime} \mathrm{ddd}{ }^{\prime}, 2 \mathrm{P} ;{ }^{2} J\left(\mathrm{XX}^{\prime}\right)=25.9\right)$	-313.3 ($\left.\mathrm{P}_{\mathrm{x}}, \mathrm{dt}, \mathrm{IP}\right)$	$142.7\left(\mathrm{P}_{\mathrm{X}},{ }^{\prime} \mathrm{ddd}{ }^{\prime}, 2 \mathrm{P} ;{ }^{2} J\left(\mathrm{XX}^{\prime}\right)=16.3\right)$

[^1]

Scheme 3. Proposed arrangement and notation as well as $J(\mathrm{P}-\mathrm{P})$ coupling constants for the $P_{3} \mid P_{2}$ ligands of complex 9 in comparison with the symmetric P_{5} unit of 10 .
complex 9 (Scheme 2) in high yield and small amounts of $\left[\left(\mathrm{Cp}{ }^{*} \mathrm{Fe}\right)\left(\mathrm{Cp}^{\prime \prime} \mathrm{Ta}\right)\left(\mu_{3}-\mathrm{P}_{5}\right)\left(\mathrm{Ta}(\mathrm{CO})_{3} \mathrm{Cp}^{\prime \prime}\right\}\right]$ (10) $\left(\left\{\mathrm{Ta}(\mathrm{CO})_{3} \mathrm{Cp}^{\prime \prime}\right\}\right.$ adduct to 4) and $\left[\left(\mathrm{Cp}^{*} \mathrm{Fe}\right)\left(\mathrm{Cp}^{\prime \prime} \mathrm{Ta}\right)\right.$ $\left.\left\{\mathrm{Cp}^{\prime \prime}(\mathrm{OC})_{2} \mathrm{Ta}\right\}\left(\mathrm{P}_{3}\right)\left(\mathrm{P}_{2}\right)\left\{\mathrm{Ta}(\mathrm{CO})_{3} \mathrm{Cp}^{\prime \prime}\right\}\right]$ (11) (adduct to 9).

The complexes 9-11 could be separated chromatographically. 9 forms a brown powder which is slightly soluble in hexane and readily soluble in toluene. It can be recrystallized from n-hexane at ca. $-78^{\circ} \mathrm{C}$.

2.2.1. Discussion of the ${ }^{1} H$ and ${ }^{31} P$ NMR data of the $P_{3} \mid P_{2}$ complex 9

In the ${ }^{1} \mathrm{H}$ NMR spectrum one observes a singlet for the $\left\{\mathrm{Cp}^{*} \mathrm{Fe}\right\}$ ligand and two different sets (1:1:1:9:9) for each $\left(\mathrm{Cp}{ }^{\prime \prime} \mathrm{Ta}\right.$) group. This pattern as well as the five different ${ }^{31} \mathrm{P}$ NMR signals (AMNXY spin system) reflect the asymmetric $\mathrm{FeTa}_{2} \mathrm{P}_{5}$ skeleton of 9 . The P_{5} part can be divided into a P_{3} unit ($\mathrm{P}_{\mathrm{A}}-\mathrm{P}_{\mathrm{Y}}-\mathrm{P}_{\mathrm{N}}$) and a P_{2} fragment ($\mathrm{P}_{\mathrm{M}}-\mathrm{P}_{\mathrm{X}}$).

The proposed connectivity of the phosphorus atoms (Scheme 3) has been derived from the ${ }^{31} \mathrm{P}$ NMR data of 9, comparing it with $\left[\left(\mathrm{Cp}^{*} \mathrm{Fe}\right)\left(\mathrm{Cp}^{\prime \prime} \mathrm{Ta}\right)\left(\mu_{3}-\right.\right.$ $\left.\left.\mathrm{P}_{5}\right)\left\{\mathrm{Ta}(\mathrm{CO})_{3} \mathrm{Cp}^{\prime \prime}\right\}\right]$ (10), a complex with an intact P_{5} chain. 9 can also be formed by photochemical decarbonylation of 10 and formal insertion of the $\left\{\mathrm{Cp}^{\prime \prime}(\mathrm{OC})_{2} \mathrm{Ta}\right\}$ fragment into a $\mathrm{P}-\mathrm{P}$ bond.

The ${ }^{1} J(\mathrm{P}-\mathrm{P})$ coupling constants show meaningful trends. For example, ${ }^{1} J\left(\mathrm{P}_{\mathrm{N}}-\mathrm{P}_{\mathrm{Y}}\right)$ of $9(-440.1)$ and ${ }^{1} J\left(\mathrm{P}_{\mathrm{M}}-\mathrm{P}_{\mathrm{X}}\right)$ of $\mathbf{1 0}$ are in a comparable range. The larger value of ${ }^{1} J\left(\mathrm{P}_{\mathrm{M}}-\mathrm{P}_{\mathrm{X}}\right)$ in 9 is in favour of a higher
multiple-bond character of its P_{2} ligand. Less informative are the long-range coupling constants (4.6 to 25.8 Hz , Table 2). All attempts failed to obtain further information about the coordination geometry of the $\mathrm{P}_{5}\left(\mathrm{P}_{3} \mid \mathrm{P}_{2}\right)$ ligand by ${ }^{31} \mathrm{P}^{31} \mathrm{P}$-COSY-45-NMR experiments.
2.3. Molecular structures of the complexes $\left[\left(\mathrm{Cp}^{*} \mathrm{Fe}\right)\right.$ $\left.\left(\mathrm{Cp}^{\prime \prime} \mathrm{Ta}\right)_{2}\left(\mathrm{P}_{5}\right)\left(\mathrm{Mo}(\mathrm{CO})_{5}\right]\right]$ (7) and $\left[\left(C p^{*} \mathrm{Fe}\right)\left(C p^{\prime \prime} \mathrm{Ta}\right)\right.$ $\left.\left\{C p^{\prime \prime}(O C)_{2} T a\right)\left(P_{3}\right)\left(P_{2}\right)\right]$ (9)

Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ are compiled in Table 3 (see also Section 3).

Fig. 2 shows the molecular structure of complex 7 with a P_{5} chain ligand, Fig. 3 illustrates the molecular structure of compound 9 with a $P_{3} \mid P_{2}$ subunit. In Fig. 4 the FeTaP_{5} skeleton of $\left[\left\{\mathrm{Cp}^{*} \mathrm{Fe}\right\}\left\{\mathrm{Cp}^{\prime \prime} \mathrm{Ta}\right\}\left(\mathrm{P}_{5}\right)\right]$ (4) [6] is shown for comparison.

2.3.1. $\left[\left(\mathrm{Cp}^{*} \mathrm{Fe}\right)\left(\mathrm{Cp}^{\prime \prime} \mathrm{Ta}\right)_{2}\left(\mathrm{P}_{5}\right)\left(\mathrm{Mol}(\mathrm{CO})_{5} /\right]\right.$ (7)

The most interesting part of complex 7 is an FeP_{5} ring with flattened chair conformation capped by a \{Cp" Ta\} fragment on each side (Fig. 2). The Ta1 \cdots Ta2 distance in the distorted cube is $3.038(1) \AA$. The P_{5} part of the six-membered ring shows a striking parallel to the analogous ligand in $\left[\left(\mathrm{Cp}^{*} \mathrm{Fe}\right)\left(\mathrm{Cp}^{\prime \prime} \mathrm{Ta}\right)\left(\mathrm{P}_{5}\right)\right]$ (4) [6] (Table 4, Fig. 4). The faces of the cube are nearly parallel to each other (distortion 0.2 to 1.0°). Their sum of bond angles varies between 356.5 and 359.4°.

Besides the short ($7,2.22 \AA / 4,2.15 \AA$) and long ($2.28 \AA / 2.27 \AA$) P-P bonds, the Pl \cdots P5 distance $(3.54 \AA(3.60 \mathrm{~A})$) as well as the $\mathrm{Ta}-\mathrm{Ta}$ distances ($2.984 \AA \mid 2.85 \AA$) of 7 and 4 do not differ significantly (Table 4). Going from the FeTaP_{5} skeleton of 4 (Fig. 4) to that of complex 7 (Fig. 2), formally, the iron atom migrates to the P1 \cdots P5 edge followed by a capping reaction of the Ta2 atom. Afterwards, Tal is also in a position to cap the FeP_{5} ring (Fig. 2). As a consequence of these structural changes the most important differences between 7 and 4 are found for P2 \cdots P4 (7, $3.81 \AA 4,2.80 \AA$) and the folding angle of the P_{5} 'envelope' part ($7,134.5 \AA 4,108.8^{\circ}$, Table 4). The mean

Table 2
${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR data of $\left[\left(\mathrm{Cp}^{*} \mathrm{Fe}\right)\left(\mathrm{Cp}^{\prime \prime} \mathrm{Ta}\right)\left\{\mathrm{Cp}^{\prime \prime}(\mathrm{OC})_{2} \mathrm{Ta}\right\}\left(\mathrm{P}_{3}\right)\left(\mathrm{P}_{2}\right)\right](9)\left(\right.$ in $\mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}, \delta$ in ppm, J in Hz$)$

$\delta^{\prime} \mathrm{H}$	$\delta{ }^{31} \mathrm{P}$
5.88 (m, 1H), 1.40 (s, 9H)	AMNXY spin system
5.25 (m, 1H), 1.38 (s, 9H)	$689.6\left(\mathrm{P}_{\mathrm{A}},{ }^{\prime} \mathrm{dd}\right.$ ', $1 \mathrm{P} ;{ }^{1} J(\mathrm{AY})=-348.0,{ }^{2} J(\mathrm{AN})=25.8$
5.20 (m, 1H), 1.18 (s, 9H)	$299.4\left(\mathrm{P}_{\mathrm{M}}, ` \mathrm{~d}\right.$ ' ${ }^{\prime}, 1 \mathrm{P} ;{ }^{1} J(\mathrm{MX})=-473.1, J(\mathrm{AM})=4.6$
4.97 (m, 1H), 1.14 (s, 9H)	$284.8\left(\mathrm{P}_{\mathrm{N}}, \quad\right.$ 'dd' ${ }^{\text {, }} \mathrm{IP} \mathrm{P}^{1} J(\mathrm{NY})=-440.1, J(\mathrm{AX})=5.3$
4.80 (m, 1H)	$191.6\left(\mathrm{P}_{\mathrm{X}},{ }^{\prime} \mathrm{d}\right.$ ', 1P; J (MN) $=5.9, J(\mathrm{MY})=10.2$
4.72 (m, 1H)	69.2 (P_{Y}, ' 'dd ${ }^{\prime}$, $1 \mathrm{lP} ; J(\mathrm{NX})=14.6, J(\mathrm{XY})=7.2$
1.71 (s, 15H)	RMS (route mean square) 0.26

Table 3
Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for the complexes 7 and 9

$\left[\left(\mathrm{Cp}{ }^{*} \mathrm{Fe}\right)\left(\mathrm{Cp}{ }^{\prime \prime} \mathrm{Ta}_{2}\left(\mathrm{P}_{5}\right)\left(\mathrm{Mo}(\mathrm{CO})_{5}\right)\right](7)\right.$				$\left[\left(\mathrm{Cp}^{*} \mathrm{Fe}\right)\left(\mathrm{Cp}^{\prime \prime} \mathrm{Ta}\right)\left\{\mathrm{Cp}^{\prime \prime}(\mathrm{OC})_{2} \mathrm{Ta}\right\}\left(\mathrm{P}_{3}\right)\left(\mathrm{P}_{2}\right)\right]$ (9)			
$\mathrm{Fe}-\mathrm{Ta} 2$	2.458(2)	$\mathrm{Fe}-\mathrm{Pl}$	2.225(4)	$\mathrm{Fe}-\mathrm{Pl}$	2.380 (3)	$\mathrm{Fe}-\mathrm{P} 2$	$2.256(3)$
$\mathrm{Fe}-\mathrm{P5}$	$2.201(5)$	Tal-Pl	2.431(4)	$\mathrm{Fe}-\mathrm{P} 4$	2.259(2)	$\mathrm{Fe}-\mathrm{P} 5$	2.359(3)
Tal-P3	2.395(4)	Tal-P5	2.429(5)	Ta2-P2	$2.501(2)$	Ta2-P3	2.483(2)
Ta2-P2	2.473(4)	Ta2-P4	2.465(4)	Tal-Pl	$2.481(2)$	Tal-P3	2.547(2)
P1-P2	2.220(6)	P2-P3	2.279(6)	Tal--P5	$2.435(2)$	Tal-Fe	2.892(1)
P3-P4	2.284(6)	P4-P5	2.216 (6)	P1-P2	2.096(3)	P4-P5	$2.132(3)$
Tal \cdots Ta2	3.038(1)	Tal \cdots Fe	2.984(2)	P3-P4	2.231(3)	Ta1 . . P2	$2.600(2)$
Tal \cdots P2	2.829(4)	Ta1 ...P4	$2.798(4)$	Ta1 \cdots P4	2.674(2)	Ta1 ...Ta2	3.278(1)
Ta2 . . P1	2.792(4)	Ta2 . . P3	2.776 (4)	P2 . . P3	3.31	P2 . . P4	3.11
Ta2 . . P5	2.777(4)	Mo-P3	2.539(4)	P1 . . P5	3.41		
$\mathrm{Fe}-\mathrm{Cp}_{\text {(centr. }}^{*}$	1.764			$\mathrm{Fe}-\mathrm{Cp}_{\text {(centr. }}^{*}$	1.748	$\mathrm{Ta} 1-\mathrm{Cp}_{\text {(centr. }}^{\prime \prime}$	2.131
$\mathrm{Tal}-\mathrm{Cp}_{\text {(centr. }}^{\prime \prime}$	2.093	$\mathrm{Ta} 2-\mathrm{Cp}_{\text {(centr. }}^{\prime \prime}$	2.104	$\mathrm{Ta} 2-\mathrm{Cp}_{\text {(cenir. }}^{\prime \prime}$	2.093		
Pl-Fe-P5	106.1(2)	$\mathrm{P} 1-\mathrm{Fe}-\mathrm{Ta} 2$	$73.00(12)$	$\mathrm{P} 2-\mathrm{Fe}-\mathrm{P} 4$	87.14(9)	$\mathrm{P} 2-\mathrm{Fe}-\mathrm{P} 5$	112.72(9)
P5-Fe-Ta2	72.93(12)	P1-Tal-P3	98.76(14)	$\mathrm{P} 4-\mathrm{Fe}-\mathrm{P} 5$	54.93(9)	$\mathrm{P} 2-\mathrm{FeP} 1$	53.69 (9)
Pl-Tal-P5	93.36(14)	P3-Tal-P5	99.39(13)	$\mathrm{P} 4-\mathrm{Fe}-\mathrm{P} 1$	115.53(9)	$\mathrm{P} 5-\mathrm{Fe}-\mathrm{Pl}$	92.11 (9)
$\mathrm{Fe}-\mathrm{Ta} 2-\mathrm{P} 4$	98.56(11)	$\mathrm{Fe}-\mathrm{Ta} 2-\mathrm{P} 2$	$98.86(11)$	P2-P1-Fe	60.13(9)	P2-P1-Tal	68.63(8)
$\mathrm{P} 2-\mathrm{Ta} 2-\mathrm{P} 4$	101.06(14)	$\mathrm{Fe}-\mathrm{Pl}-\mathrm{Tal}$	79.59(14)	$\mathrm{Fe}-\mathrm{Pl}-\mathrm{Ta} 1$	72.99(7)	$\mathrm{Pl}-\mathrm{P} 2-\mathrm{Fe}$	66.18(10)
$\mathrm{Fe}-\mathrm{P} 1-\mathrm{P} 2$	114.9(2)	Ta1-P1-P2	74.8(2)	$\mathrm{Pl}-\mathrm{P} 2-\mathrm{Ta} 2$	130.33(12)	$\mathrm{Fe}-\mathrm{P} 2-\mathrm{Ta} 2$	133.70(10)
P1-P2-Ta2	72.8(2)	$\mathrm{P} 3-\mathrm{P} 2-\mathrm{Ta} 2$	71.4(2)	Tal-P3-P4	67.69(8)	Ta2-P3-P4	111.41 (10)
P1-P2-P3	109.0(2)	P2-P3-P4	113.3(2)	P3-P4-P5	113.99(13)	Ta1-P3-Ta2	$81.33(6)$
P2-P3-Tal	74.4(2)	P4-P3-Tal	73.4(2)	$\mathrm{Fe}-\mathrm{P} 4-\mathrm{P} 3$	119.47(12)	Fe-P4-P5	64.91(9)
P3-P4-P5	109.7(2)	P5-P4-Ta2	72.6 (2)	Tal-P5-P4	71.32(9)	Fe-P5-Tal	74.19(7)
P3-P4-Ta2	71.4(2)	Fe-P5-Tal	80.08(14)	P4-P5-Fe	60.16(9)		
P4-P5-Tal	73.9(2)	P4-P5-Fe	115.3(2)				

value of the $\mathrm{P}-\mathrm{P}$ bond lengths ($2.25 \AA$ for 7) is in good agreement with the $2.24 \AA$ in $\left[\left(\mathrm{Cp}^{*} \mathrm{Ti}_{2}\right)_{2}\left(\mu-\eta^{3: 3}-\mathrm{P}_{6}\right)\right]$ with the same structural features; namely a P_{6} chain capped by two $\mathrm{Cp}{ }^{*} \mathrm{Ti}$ fragments [11]. The $\mathrm{Ti} \cdots \mathrm{Ti}$ distance ($3.19 \AA$) is slightly longer than the $\mathrm{Ta} \cdots \mathrm{Ta}$ of 7 (3.04 \AA).

Fig. 2. Molecular structure of $\left[\left(\mathrm{Cp}^{*} \mathrm{Fe}\right)\left(\mathrm{Cp}^{\prime \prime} \mathrm{Ta}_{2}\right)\left(\mathrm{P}_{5}\right)\left\{\mathrm{Mo}(\mathrm{CO})_{5}\right\}\right]$ (7).

According to the Wade/Mingos electron-counting rules [13], the core of 7 possesses 58 valence electrons (VE); an electron deficiency of 12 ($70 \mathrm{VE}-58$). It is difficult to answer the question whether there exist metal-metal bonds between $\mathrm{Fe} \cdots \mathrm{Ta} 1$ (2.984(2) \AA) and $\mathrm{Tal} \cdots \mathrm{Ta} 2(3.038(1) \AA$). For example, the $\mathrm{Ta}-\mathrm{Ta}$ distance in the dinuclear complex $\left[\mathrm{Cp}{ }^{*} \mathrm{Ta}(\mathrm{CO})_{2}(\mu-\mathrm{Cl})\right]_{2}$ is 3.062(1) \AA [14] compared with the sum of the $\mathrm{Fe} / \mathrm{Ta}$ covalent radii $(2.50 \AA)$; the distance $\mathrm{Fe}-\mathrm{Ta} 2(2.458(2) \AA)$ (Table 3) in 7 is only slightly shortened. Formally, the $\mathrm{FeTa}_{2} \mathrm{P}_{5}$ framework of 7 can be regarded as an isosce-

Fig. 3. Molecular structure of $\left[\left(\mathrm{Cp}^{*} \mathrm{Fe}\right)\left(\mathrm{Cp}^{\prime \prime} \mathrm{Ta}\right)\left\{\mathrm{Cp}^{\prime \prime}(\mathrm{OC})_{2}\right.\right.$ $\left.\mathrm{Ta}\left(\mathrm{P}_{3}\right)\left(\mathrm{P}_{2}\right)\right](9)$.

Table 4
Comparable bond lengths (A) and angles $\left({ }^{\circ}\right)$ for the complexes 7 and 4

$\left[\left(\mathrm{Cp}^{*} \mathrm{Fe}\right)\left(\mathrm{Cp}^{\prime \prime} \mathrm{Ta}\right)_{2}\left(\mathrm{P}_{5}\right)\left(\mathrm{Mo}(\mathrm{CO})_{5}\right\}\right](7)$	$\left.\left[\left(\mathrm{Cp}{ }^{*} \mathrm{Fe}\right)\left(\mathrm{Cp}^{\prime \prime} \mathrm{Ta}\right) \times \mathrm{P}_{5}\right)\right](4)[6]$	
$\mathrm{P} 1-\mathrm{P} 2 \mid \mathrm{P} 4-\mathrm{P} 5$	2.221^{a}	2.151^{a}
$\mathrm{P} 2-\mathrm{P} 3 \mid \mathrm{P} 3-\mathrm{P} 4$	2.280^{a}	2.268^{a}
$\mathrm{P} 1 \cdots \mathrm{P} 5$	3.537	3.602
$\mathrm{P} 2 \cdots \mathrm{P} 4$	3.807	2.804
$\mathrm{Fe} \cdots \mathrm{Tal\mid Fe-Ta}$	2.984	2.854
P_{5} envelope folding	134.5	108.8
angle		

${ }^{a}$ Mean value.
les FeTa_{2} triangle which is nearly symmetrically bridged by a P_{5} chain (Fig. 2).

2.4. $\left[\left(\mathrm{Cp}^{*} \mathrm{Fe}\right)\left(\mathrm{Cp}^{\prime \prime} \mathrm{Ta}\right)\left\{\mathrm{Cp}^{\prime \prime}(\mathrm{OC})_{2} \mathrm{Ta}\right)\left(\mathrm{P}_{3}\right)\left(\mathrm{P}_{2}\right)\right]$ (9)

The $\mathrm{FeTa}_{2} \mathrm{P}_{3} \mathrm{P}_{2}$ skeleton of 9 (cf. Fig. 3) and the FeTaP_{5} core of 4 (Fig. 4) show remarkable parallels as well as differences. As expected, the P1-P2 bond of the P_{2} ligand shortens to 2.096 (3) \AA (Table 3), whereas in 4 [6] 2.150(2) \AA (Table 4) was found for the P1-P2 distance of the P_{5} chain.

The cleaved P2 \cdots P3 bond ($3.31 \AA$) in 9 differs distinctly from $d(\mathrm{P} 2-\mathrm{P} 3)=2.271(2) \AA$ in the intact P_{5} chain of 4. Despite the formal insertion of a $\left\{\mathrm{Cp}^{\prime \prime} \mathrm{Ta}(\mathrm{CO})_{2}\right\}$ fragment into the $\mathrm{P} 2-\mathrm{P} 3$ bond of 4 (Figs. 3 and 4), the envelope-like conformation of the five P atoms is comparable for 9 and 4 . Going from 4 (acyclic P_{5} ligand) to $9\left(P_{3} \mid P_{2}\right.$ ligands) the folding angle $\mathrm{P} 1,2,4,5 \mid \mathrm{P} 2,3,4$ expands from 108.8° in 4 to 115.1° in 9. Interestingly, for the P_{2} unit of complex 9 the rare $\mu_{3}-\eta^{2: 1: 1}-E_{2}(E=P$, As) coordination mode was found; it has been realized for the first time in $\left[\left(\mathrm{Cp}^{*} \mathrm{Co}\right)_{3}(\mu-\right.$ $\left.\eta^{2: 2}-\mathrm{As}_{2}\right)\left(\mu_{3}-\eta^{2: 1: 1}-\mathrm{As}_{2}\right)_{2}$] [15] (cf. [($\left.\mathrm{Cp}^{*} \mathrm{Co}\right)_{3} \mathrm{P}_{6}$] [16]). The most intriguing structural part of complex 9 is the acyclic P_{3} ligand. Nearly the same trend in $P-P$ bond lengths ($9, \mathrm{P} 3-\mathrm{P} 4=2.231(3), \mathrm{P} 4-\mathrm{P} 5=2.132(3) \AA$) was found in $\left[\left(\mathrm{Cp}^{*} \mathrm{Mo}\right)_{2}\left(\mu-\eta^{2: 2}-\mathrm{PS}\right)\left(\mu_{3}-\eta^{3: 3: 1}-\mathrm{P}_{3}\right)\left(\mathrm{Cr}(\mathrm{CO})_{5}\right\}\right]$ (12) $[17]\left(d\left(\mathrm{P}_{3}\right)=2.286(6) \AA \mid 2.109(7) \AA\right)$, the only other compound where, to the best of our knowledge, an acyclic, substituent-free P_{3} ligand has been realized. The PPP bond angles differ by $6.2^{\circ}\left(\mathbf{9}, 113.99(13)^{\circ} ; 12\right.$, $\left.107.8(2)^{\circ}\right)$.

Fig. 4. FeTaP_{5} skeleton of $\left[\left(\mathrm{Cp}^{*} \mathrm{Fe}\right)\left(\mathrm{Cp}^{\prime \prime} \mathrm{Ta}\right) \mathrm{P}_{5}\right]$ (4) [6]. Cp^{*} and $\mathrm{Cp}^{\prime \prime}$ ligands have been omitted.

The coordination mode of the acyclic P_{3} ligand in complex 9 (Fig. 3) is very unusual. Besides an η^{2} (P4-P5), one terminal (P5-Ta1) and one bridging (P3Ta1,2) coordination can be derived. The ligand should be described as $\mu_{3}-\eta^{2: 1: 1: 1}-\mathrm{P}_{3}$. Whereas $\mathrm{Fe}-\mathrm{Ta}=$ 2.892(1) \AA differs only slightly from the comparable $\mathrm{Fe}-\mathrm{Ta}$ bond length $(2.854(1) \AA$) in 4 [6], the distances $\mathrm{Ta} \cdots \mathrm{P} 2=2.600(2)$ and $\mathrm{Tal} \cdots \mathrm{P} 4=2.674(2) \AA$ (face diagonals) are distinctly longer in 4 (mean value $2.75 \AA$, cf. Figs. 3 and 4) than in 9.

A further interesting parallel to 9 was found for the dinuclear complex $\left[\left\{(\right.\right.$ tripod $\left.) \mathrm{Co}_{2}\left(\mu-\eta^{3: 3}-\mathrm{P}_{3} \mathrm{Et}\right)\right]\left[\mathrm{BF}_{4}\right]_{2}$, where for the first time the coordinative stabilization of EtP_{3}, the all-phosphorus analogue of EtN_{3} (ethyl azide), has been realized [3]. Ab initio calculations on P_{3}^{-}(16 VE), the phosphorus analogue of the azide ion N_{3}^{-}(16 VE), show that the bent P_{3}^{-}isomer differs energetically only slightly from the linear one [18].

3. Experimental details

All experiments were carried out under an argon atmosphere in dry solvents. [$\mathrm{Cp}^{*} \mathrm{FeP}_{5}$] (1) [19], $\left[\mathrm{Cp}^{\prime \prime} \mathrm{Ta}(\mathrm{CO})_{4}\right]$ (2) $[20]$ and $\left[\left(\mathrm{Cp}^{*} \mathrm{Fe}\right)\left(\mathrm{Cp}^{\prime \prime} \mathrm{Ta}\right)\left(\mathrm{P}_{5}\right)\right](4)[6]$ were prepared as described in the literature. ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectra were measured on a Bruker AC 200 or AMX $400\left({ }^{1} \mathrm{H}: \mathrm{C}_{6} \mathrm{D}_{5} H=7.20 \mathrm{ppm}\right.$ or $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{2} \mathrm{H}=$ 2.30 ppm as internal standard; ${ }^{31} \mathrm{P}: 85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ as external standard). Simulation and iteration of the spectra were carried out with PERCH-NMR software [21]. IR spectra were recorded on a Perkin-Elmer 881. UVirradiation: 150 W Hg high-pressure lamp, TQ 150, Heraeus Quarzlampen GmbH, Hanau.

3.1. Syntheses of the complexes 3a,b, 4, 5 and 6

1.655 g (3.519 mmol$) 2$ and $0.409 \mathrm{~g}(1.182 \mathrm{mmol}) 1$, each dissolved in ca. 5 ml decalin, were added to a 250 ml three-necked flask filled with 120 ml decalin and heated to reflux with stirring. During the reaction (6 h) the colour changed from yellow-green to black-brown. After evaporation of the solvent under oil-pump vacuum the residue was dissolved in ca. 10 ml dichloromethane,
ca. g of silica gel was added and the mixture was concentrated until it was free-flowing. Column chromatography (column $27 \times 1.5 \mathrm{~cm}^{2}, \mathrm{SiO}_{2}$, petroleum ether) afforded, with petroleum ether|toluene (25:1), 161 mg (10%) unreacted yellow 2. Afterwards (mixture $15: 1), 30 \mathrm{mg}$ (2% based on 1) [($\left.\left.\mathrm{Cp}^{\prime \prime} \mathrm{Ta}\right)_{4}\left(\mathrm{P}_{3}\right)_{2}\right]$ (6) [9] was eluted as a grey-violet zone. Petrolether|toluene (10:1) gave 29 mg (4% based on 1) olive-green $\left[\left(\mathrm{Cp}^{\prime \prime} \mathrm{Fe}\right)\left(\mathrm{Cp}^{\prime \prime} \mathrm{Ta}\right)\left(\mathrm{P}_{5}\right)\right](4)$ [6], followed by an $8: 1$ mixture which provides 41 mg (3% based on 1) green $\left.\left[\mathrm{Cp}^{\prime \prime} \mathrm{Ta}\right)_{3}\left(\mathrm{P}_{4}\right)\left(\mathrm{P}_{2}\right)\right]$ (5) [8]. Finally, petrolether|toluene ($5: 1$ to $2: 1$) eluted 525 mg (42% based on 1) blackbrown equilibrium mixture $\left[\left(\mathrm{Cp}^{*} \mathrm{Fe}\right)\left(\mathrm{Cp}^{\prime \prime} \mathrm{Ta}\right){ }_{2} \mathrm{P}_{5}\right](3 \mathrm{Ba}, \mathrm{b})$, which was recrystallized from a saturated n-hexane|dichloromethane solution at $-78^{\circ} \mathrm{C}$. Anal. Found: C, 39.61; H, 5.32. $\mathrm{C}_{36} \mathrm{H}_{57} \mathrm{FeP}_{5} \mathrm{Ta}_{2}$ Calc.: C, $40.70 ; \mathrm{H}$, 5.41%.

3.2. Synthesis of $\left[\left(\mathrm{Cp}^{*} \mathrm{Fe}\right)\left(\mathrm{Cp}^{\prime \prime} \mathrm{Ta}_{2}\left(\mathrm{P}_{5}\right)\left(\mathrm{Mo}(\mathrm{CO})_{5}\right]\right]\right.$

A solution of $\left[\mathrm{Mo}(\mathrm{CO})_{5}(\mathrm{thf})\right]$, prepared from 263 mg $(1.00 \mathrm{mmol})\left[\mathrm{Mo}(\mathrm{CO})_{6}\right.$] by irradiation (30 min in a UV apparatus) in 70 ml THF, was added at room temperature with stirring to a solution of $259 \mathrm{mg}(0.244 \mathrm{mmol})$ 3a,b in ca. 10 ml THF (100 ml flask) and stirred for 20 h at room temperature. Afterwards, the solvent was evaporated under oil-pump vacuum, the residue was dissolved in ca. 5 ml dichloromethane, ca. 1 g of silica gel was added, and the mixture was concentrated until it was free-flowing. Column chromatography (column 20 $\times 2 \mathrm{~cm}^{2}, \mathrm{SiO}_{2}$, petroleum ether) gave, with petroleum ether|toluene (20:1), a small yellow zone ($\left[\mathrm{Mo}(\mathrm{CO})_{6}\right]$). Petroleum ether|toluene (5:1) eluted 149 mg (47% based on 3a,b) green-brown 7, which was recrystallized from n-hexane at $-78^{\circ} \mathrm{C}$. Anal. Found: C, 36.93; H, 4.41. $\mathrm{C}_{41} \mathrm{H}_{57} \mathrm{MoO}_{5} \mathrm{P}_{5} \mathrm{Ta}_{2}$ Calc.: C, $37.93 ; \mathrm{H}, 4.42 \%$.

> 3.3. Synthesis of $\left[\left(C p^{*} \mathrm{Fe}\right)\left(\mathrm{Cp} p^{\prime \prime} \mathrm{Ta}\right)\left(\mathrm{Cp}^{\prime \prime}(O C)_{2} \mathrm{Ta}\right)-\right.$ $\left.\left(P_{3}\right)\left(P_{2}\right)\right](9)$

3.3.1. $\left[\mathrm{Cp}^{\prime \prime} \mathrm{Ta}(\mathrm{CO})_{2}(\mathrm{cod})\right](8)$

$313 \mathrm{mg}(0.666 \mathrm{mmol})\left[\mathrm{Cp}^{\prime \prime} \mathrm{Ta}(\mathrm{CO})_{4}\right]$ (2) and 704 mg (6.47 mmol) cyclooctadiene (COD), dissolved in 50 ml toluene, were irradiated (UV apparatus) in a 70 ml apparatus. After 50 min IR spectroscopically exclusively the CO bands of 8 , which was handled only in solution, could be detected.

Starting with 299 mg (0.618 mmol$) 2$ and 704 mg $(6.47 \mathrm{mmol}=0.8 \mathrm{ml}) \mathrm{COD}$ in ca. 50 ml toluene its cophotolysis provided a solution of 8 (IR: $v(\mathrm{CO})=$ $1974(\mathrm{~s}), 1866(\mathrm{~s}))$. Afterwards, 220 mg (0.312 mmol) of $\left[\left(\mathrm{Cp}^{*} \mathrm{Fe}\right)\left(\mathrm{Cp}^{\prime \prime} \mathrm{Ta}\right)\left(\mathrm{P}_{5}\right)\right](4)$ in 5 ml toluene was added and this solution was stirred for ca. 5 h until the IR-CO bands of 9 (1954(s), 1895(s)) attained a maximum. After evaporation of the solvents under oil-pump vacuum the residue was dissolved in ca. 10 ml
dichloromethane, ca. 1 g of silylated silica gel was added, and the mixture was concentrated until it was free-flowing. Column chromatography (column $28 \times$ $1.5 \mathrm{~cm}^{2}, \mathrm{SiO}_{2}$, petroleum ether), starting with petroleum ether|toluene ($20: 1$), gave, with a $3: 1$ mixture, traces of 4, followed by 21 mg (6% based on 4) orange-brown mono-adduct $\left[\left(\mathrm{Cp}^{*} \mathrm{Fe}\right)\left(\mathrm{Cp}^{\prime \prime} \mathrm{Ta}\right)\left(\mu_{3}-\mathrm{P}_{5}\right)\left\{\mathrm{Ta}(\mathrm{CO})_{3} \mathrm{Cp}^{\prime \prime}\right\}\right]$ (10) [10]. Further elution led to 19 mg (4% based on 4) dark-grey $\quad\left[\left(\mathrm{Cp}^{*} \mathrm{Fe}\right)\left(\mathrm{Cp}^{\prime \prime} \mathrm{Ta}\right)\left\{\mathrm{Cp} \mathrm{p}^{\prime \prime}(\mathrm{OC})_{2} \mathrm{Ta}\right\}\right.$ $\left.\left(\mathrm{P}_{3}\right)\left(\mathrm{P}_{2}\right)\left\{\mathrm{Ta}(\mathrm{CO})_{3} \mathrm{Cp}^{\prime \prime}\right\}\right]$ (11) [10], the $\left\{\mathrm{Ta}(\mathrm{CO})_{3} \mathrm{Cp}^{\prime \prime}\right\}$ adduct of 9 . A petroleum ether|toluene mixture of $2: 1$ eluted 282 mg (81% based on 4) brown 9 , which can be recrystallized from n -hexane at $-78^{\circ} \mathrm{C}$. Anal. Found: C, 40.52 ; H, 5.21. $\mathrm{C}_{38} \mathrm{H}_{57} \mathrm{FeO}_{2} \mathrm{P}_{5} \mathrm{Ta}_{2}$ Calc.: C, 40.81; H, 5.14\%.

3.4. X-ray crystal structure determinations of 7 and 9

Crystal data for 7 [9]: $\mathrm{C}_{41} \mathrm{H}_{57} \mathrm{FeMoO}_{5} \mathrm{P}_{5} \mathrm{Ta}_{2}$ $\left[\mathrm{C}_{38} \mathrm{H}_{57} \mathrm{FeO}_{2} \mathrm{P}_{5} \mathrm{Ta}_{2}\right.$]; $M_{\mathrm{r}}=1298.4$ [1118.4]; monoclinic; space group $P 2_{1} / c$ [$\left.P 2_{1} / n\right] ; a=12.607(3)$ [12.343(2) $\AA], \quad b=17.0479(10) \quad[21.987(2) \AA], \quad c=$ $23.126(5) \quad[15.6140(10) \AA] ; \quad \beta=102.469(10)$ [99.000(10) ${ }^{\circ}$]; $V=4853.1(14)\left[4185.2(8) \AA^{3}\right] ; Z=4 ; D_{\mathrm{c}}$ $=1.777 \quad\left[1.775 \mathrm{~g} \mathrm{~cm}^{-3}\right] ; \quad \mu($ Mo $\quad \mathrm{K} \alpha)=52.43$ [$57.80 \mathrm{~cm}^{-1}$]; measured reflections 11293 [11453], independent reflections 10505 [9579], $R($ int $)=0.0615$ [0.0477], refined parameters 518 [455]; diffractometers Enraf-Nonius CAD4 [Siemens P4]; T 293 [183 K]; θ range $2.04-26.94^{\circ}\left[2.17-27.50^{\circ}\right] ; R_{1}=0.1629$ [0.1041], $w R_{2}=0.1482$ [0.0864] (all data, refinement according to F^{2}). Structure solution by direct methods, sHELXS-86 [SIR 92].

Further details of the X-ray structure determinations may be obtained from the Fachinformationszentrum Karlsruhe GmbH, D-76344 Eggenstein-Leopoldshafen, Germany on quoting the depository numbers CSD405320 and CSD-405321, the names of the authors and the journal citation.

Acknowledgements

We thank the Fonds der Chemischen Industrie and the Graduiertenkolleg 'Phosphorus Chemistry as a Link Between Different Chemical Disciplines' for financial support. The help of Dr. K. Öfele, TU München, in preparing $\left[\mathrm{Cp}^{\prime \prime} \mathrm{Ta}(\mathrm{CO})_{4}\right]$ is gratefully acknowledged.

References

[1] O.J. Scherer, Angew. Chem., 102 (1990) 1137; Angew. Chem., Int. Ed. Engl., 29 (1990) 1104; M. Scheer and E. Herrmann, Z. Chem., 30 (1990) 41.
[2] M. Di Vaira, P. Stoppioni and M. Peruzzini, Polyhedron, 6 (1987) 35.
[3] A. Barth, G. Huttner, M. Fritz and L. Zsolnai, Angew. Chem., 102 (1990) 956; Angew. Chem., Int. Ed. Engl., 29 (1990) 929.
[4] M. Scheer, U. Becker, M.H. Chisholm, J.C. Huffman, F. Lemoigno and O. Eisenstein, Inorg. Chem., 34 (1995) 3117.
[5] O.J. Scherer, G. Schwarz and G. Wolmershäuser, Z. Anorg. Allg. Chem., 622 (1996) 951.
[6] M. Detzel, T. Mohr, O.J. Scherer and G. Wolmershäuser, Angew. Chem., 106 (1994) 1142; Angew. Chem., Int. Ed. Engl., 33 (1994) 1110.
[7] A.C. Reddy, E.D. Jemmis, O.J. Scherer, R. Winter, G. Heckmann and G. Wolmershäuser, Organometallics, $/ 1$ (1992) 3894.
[8] O.J. Scherer, R. Winter and G. Wolmershäuser, J. Chem. Soc., Chem. Commun., (1993) 313.
[9] T. Mohr, O.J. Scherer and G. Wolmershäuser, in preparation; cf. $\left[\{\mathrm{CpV}\}_{4}\left(\mathrm{P}_{3}\right)_{2}\right]$ M. Herberhold, G. Frohmader and W. Milius, Phosphorus, Sulfur, and Silicon, $93 / 94$ (1994) 205.
[10] T. Mohr, Thesis, University of Kaiserslautern, 1996 (unpublished).
[11] O.J. Scherer, H. Swarowsky, G. Wolmershäuser, W. Kaim and S. Kohlmann, Angew. Chem., 99 (1987) 1178; Angew. Chem., Int. Ed. Engl., 26 (1987) 1153.
[12] O.J. Scherer, J. Braun and G. Wolmershäuser, Chem. Ber., 123 (1990) 471.
[13] K. Wade, Adv. Inorg. Chem., 18 (1976) 1; D.M.P. Mingos and R.L. Johnston, Struct. Bond., 68 (1987) 29.
[14] D. Kwon, J. Real, M.D. Curtis, A. Rheingold and B.S. Haggerty, Organometallics, 10 (1991) 143.
[15] O.J. Scherer, K. Pfeiffer, G. Heckmann and G. Wolmershäuser, J. Organomet. Chem., 425 (1992) 141.
[16] R. Ahlrichs, D. Fenske, K. Fromm, H. Krautscheid, U. Krautscheid and O. Treutler, Chem. Eur. J., 2 (1996) 237.
[17] H. Brunner, U. Klement, W. Meier, J. Wachter, O. Serhadle and M.L. Ziegler, J. Organomet. Chem., 335 (1987) 339.
[18] J.K. Burdett and C.J. Marsden, New J. Chem., 12 (1988) 797.
[19] M. Detzel, G. Friedrich, O.J. Scherer and G. Wolmershäuser, Angew. Chem., 107 (1995) 1454; Angew. Chem., Int. Ed. Engl., 34 (1995) 1321.
[20] O.J. Scherer, R. Winter and G. Wolmershäuser, Z. Anorg. Allg. Chem., 619 (1993) 827.
[21] R. Laatikainen and M. Niemitz, PERCH-NMR Software, University of Kuopio, Finland, 1995.

[^0]: * Corresponding author.
 ${ }^{1}$ Dedicated to Professor Max Herberhold, Bayreuth, on the occasion of his 60th birthday.
 ${ }^{2}$ X-ray crystal structure determinations.

[^1]: ${ }^{\mathrm{a}} \mathrm{RMS}=$ route mean square.

