

Journal of Organometallic Chemistry 529 (1997) 379-385

Cleavage of an acyclic P_5 ligand into $P_4|P_1$ and $P_3|P_2$ molecular building blocks¹

Otto J. Scherer *, Thomas Mohr, Gotthelf Wolmershäuser²

Department of Chemistry, University of Kaiserslautern, 67663 Kaiserslautern, Germany

Received 2 April 1996; accepted 31 May 1996

Abstract

The cothermolysis of $[Cp^* FeP_5](1)$ and $[Cp''Ta(CO)_4](2)$, $Cp'' = C_5H_3^{T}Bu_2 - 1.3$, affords the trinuclear cubane-like compounds 3 in the form of the equilibrium mixture $[(Cp^*Fe)(Cp''Ta)_2P_5](3a) \rightleftharpoons [(Cp^*Fe)(Cp''Ta)_2(P_4)(P_1)](3b)$ and small amounts of the P_n complexes $[(Cp^*Fe)(Cp''Ta)(P_5)](4)$, $[(Cp''Ta)_3(P_4)(P_2)](5)$, and $[(Cp''Ta)_4(P_3)_2](6)$. Further reaction of 3a,b with $[Mo(CO)_5(thf)]$ gives exclusively $[(Cp^*Fe)(Cp''Ta)_2(P_5)(Mo(CO)_5)](7)$. The skeleton of 7 consists of an FeP₅ six-membered ring capped by two $\{Cp''Ta\}$ fragments. The formal insertion of a $\{Cp''Ta(CO)_2\}$ unit into the intact P_5 chain of 4 provides $[(Cp^*Fe)(Cp''Ta)\{Cp''(OC)_2Ta}(P_3)(P_2)]$ (9), a trinuclear species where the intact P_5 chain of the educt 4 has been cleaved into a P_3 and a P_2 ligand. 7 and 9 have been further characterized by X-ray crystal structure analyses.

Keywords: Iron; Tantalum; Phosphorus; Cage compound; Cluster; Cyclopentadienyl

1. Introduction

Little is known about the selective cleavage of cyclic or acyclic P_n ligands (n = 3-6 for example) to ringopened or smaller fragments (for reviews see Ref. [1]). The cyclo-P₃ ligand of the cationic complexes $[LNi(P_3)]^+$ and $[LCo(P_3Et)]^+$ can be cleaved by reacting it with, for example, $[(Ph_3P)_2Pt(C_2H_4)]$ [2] or $Co^{2+}|L (L = MeC(CH_2PPh_2)_3)$ [3]. A strong kite-like distortion $(P_1|P_3)$ of the P_4 ring was observed for $[Cp''Co(P_4){(CoCp'')_2(\mu-CO)}]$ [4]; in contrast, the photolysis of $[Cp'' Fe(cyclo-P_4){Fe(CO)_2Cp''}]$ gives $[(Cp''Fe)_2(P_4)]$ with a P₄ chain [5]. Finally, the cothermolysis of the sandwich complexes [Cp * FeP₅] and $[Cp''Ta(CO)_4]$ affords $[Cp * FeP_5TaCp'']$, where one P-P bond of the cyclo-P₅ educt is broken [6]. Interestingly, the P₆ middle deck of the 26 valence-electron triple decker $[(Cp''Nb)_2(P_6)]$, $Cp'' = C_5H_3^{-1}Bu_2 - 1.3$, is distorted on the way to two P_3 units [7].

² X-ray crystal structure determinations.

2. Results and discussion

The thermolysis of 1 and 2 for 6 h in boiling decalin gives, besides small amounts (ca. 3%) of 4 [6], 5 [8], and 6 [9], in a yield of 42% a mixture of the cubanes **3a,b** with an FeTa₂P₅-framework (Scheme 1). Column chromatography followed by recrystallization leads to a black-brown crystalline powder, which is slightly soluble in hexane and readily soluble in toluene.

The equilibrium $[(Cp^* Fe)(Cp'' Ta)_2(P_5)]$ (3a) \rightleftharpoons $[(Cp^* Fe)(Cp'' Ta)_2(P_4)(P_1)]$ (3b) can be shifted quantitatively to the left side (cubane 3a) on further coordination of 3a,b to an $\{Mo(CO)_5\}$ fragment (compound 7, Scheme 1).

2.1. NMR data of the multinuclear P_5 complexes 3a,b and 7

Table 1 summarizes the ¹H and ³¹P NMR data of the trinuclear P_5 complexes **3a**,**b** and **7**.

Temperature dependent ¹H NMR studies [10] on compound **3** in C_6D_6 show that there exists an equilibrium between two isomers (**3a** \approx **3b**; 298 K; **3a**:**3b** 1:1.45). Two sets of magnetically different Cp'' ligands, ratio 1:2:18, in a symmetric surrounding are observed

^{*} Corresponding author.

¹ Dedicated to Professor Max Herberhold, Bayreuth, on the occasion of his 60th birthday.

⁰⁰²²⁻³²⁸X/97/\$17.00 © 1997 Elsevier Science S.A. All rights reserved. *PII* S0022-328X(96)06557-6

for **3a** and **7** ({Mo(CO)₅} adduct to **3**). The two Cp" ligands of **3b** are related through a mirror plane as the only element of symmetry, and thus show a 2:2:2:18:18 splitting pattern. Cp * Fe (15H) gives a singlet for all three complexes (Table 1).

The ³¹P NMR spectrum of **3a** consists of an AA'MXX' spin system which is in accordance with a symmetric P₅ chain. The lowest chemical shift (416.3 ppm, Table 1) was found for the 'terminal' P atoms P_{AA'}. Interestingly, compounds **3a** and **7** ({Mo(CO)₅} adduct to **3a**) do not differ significantly with respect to coupling constants and chemical shifts (Table 1). For **3b** four signal groups can be detected in the ³¹P NMR spectrum. The four phosphorus atoms form an isotetraphosphide P_M-P_X(P_N)₂ unit (P₄ tetrahedron, where three P-P bonds are cleaved, cf. Fig. 1). It is worthwhile mentioning the large chemical shift range of the isomer **3b** (776.8, P_A to -313.3, P_X, $\Delta = 1090$ ppm; **3a**, $\Delta = 305$ ppm, Table 1). P_A is a single phosphorus atom surrounded by two {Cp''Ta} and one {Cp * Fe} fragment. On the basis of the X-ray structure results for compound **7** (Section 2.3) the cubane-like

 $\begin{array}{c} Cp'' \\ Cp^*_{Fe} & P \\ P & P \\ P & Ta \\ A (3a) & Cp'' \end{array} \begin{array}{c} P \\ P & Cp^* & P \\ Cp^* & Ta \\ Cp^* & Ta \\ P \\ Cp^* & B (3b) \end{array}$

Fig. 1. Proposed molecular structures for the isomers **3a,b**.

polyhedra A (3a) and B (3b) of Fig. 1 are in good agreement with the NMR data.

Less likely is an isomer of 3 with a Ta-Ta edge in the distorted cube. As derived from the NMR data the proposed structure (Fig. 1) with the two Ta atoms in the position of a body diagonal appears most convincing.

3a shows an interesting parallel to $[(Cp^* Ti)_2(\mu \cdot \eta^{3:3} - P_6)]$, where a flattened P₆ chair is capped by two $\{Cp^* Ti\}$ fragments [11]. A P₅ resembling **3b** with a P₁ and a tripodal P₄ (trigonal pyramidal) ligand is found in $[(Cp^* Ni)_3(P_4)(P_1)]$, a complex with a distorted Ni₃P₅ cube skeleton [12].

2.2. Cleavage of a P_5 chain ligand into a P_3 and a P_2 fragment

Room temperature reaction of $[(Cp * Fe)(Cp'' Ta)(P_5)]$ (4) and $[Cp'' Ta(CO)_2(cod)]$ (8) afforded the novel $P_3|P_2$

 $[\{Cp^*Fe\}(Cp^{Ta})(P_5)] \xrightarrow{toluene}{r.t., 5h} \{(Cp^*Fe}(Cp^{Ta})(Cp^{Ta})(P_2), P_3\}(P_3)(P_2)\}$

Scheme 2.

Table 1

¹H and ³¹P NMR data for the P₅ complexes **3a**,**b** and **7** (in C₆D₆, 298 K, δ in ppm, J in Hz)

$[(Cp * Fe)(Cp'' Ta)_2(P_5)]$ 3a	$[(Cp * Fe)(Cp'' Ta)_2(P_4)(P_1)] 3b$	$[(Cp * Fe)(Cp'' Ta)_2(P_5){Mo(CO)_5}]$ 7
δ'H	·····	
6.42 (d, 2H, J = 2.3)	5.74 (m, 2H)	6.79 (m, 1H)
6.21 (m, 1H)	5.07 (m, 2H)	6.25 (d, 2H, $J = 2.2$)
5.34 (m, 2H)	4.15 (m, 2H)	5.34 (m, 2H)
4.54 (t, 1H, $J = 2.3$)	1.99 (s, 18H)	5.32 (m, 1H)
1.69 (s, 18H)	1.44 (s, 15H)	1.74 (s, 15H)
1.49 (s, 15H)	1.01 (s, 18H)	1.36 (s, 18H)
1.31 (s, 18H)		1.32 (s, 18H)
δ^{31} P		
AA'MXX' spin system	AMN_2X spin system	AA'MXX' spin system
$RMS = 0.40^{-a}$	RMS = 0.41	RMS = 0.17
416.3 (P_A , m, 2P; ${}^1J(AX) = -292.2$,	776.8 (P_A , d, 1P; $^2 J(AM) = 11.1$)	384.8 (P _A , m, 2P; $^{1}J(AX) = -312.8$,
$^{2}J(AM) = 36.7)$	$332.9 (P_M, dd, 1P; J(MX) = -318.0)$	$^{2}J(AM) = 25.3)$
218.6 (P_M , "tt", 1P; ${}^{1}J(MX) = -252.6$,	267.3 (P_N , d, 2P; ${}^1J(NX) = -218.3$)	233.5 (PM, "tt", 1P; ${}^{1}J(MX) = -284.2$,
J(AX') = -15.5)		J(AX') = -7.9
110.9 (P_X , "ddd", 2P; ${}^2J(XX') = 25.9$)	-313.3 (P _X , dt, 1P)	142.7 (P_X , "ddd", 2P; $^2J(XX') = 16.3$)

RMS = route mean square.

[(Cp*Fe)(Cp"Ta){Cp"(OC)₂Ta}(P₃)(P₂)] [(Cp*Fe)(Cp"Ta)(P₃){Ta(CO)₃Cp"}] 9 10

Scheme 3. Proposed arrangement and notation as well as J(P-P) coupling constants for the $P_3|P_2$ ligands of complex 9 in comparison with the symmetric P_5 unit of 10.

complex 9 (Scheme 2) in high yield and small amounts of $[(Cp * Fe)(Cp'' Ta)(\mu_3 - P_5){Ta(CO)_3 Cp''}]$ (10) $({Ta(CO)_3 Cp''}$ adduct to 4) and $[(Cp * Fe)(Cp'' Ta) - {Cp''(OC)_2 Ta}(P_3)(P_2){Ta(CO)_3 Cp''}]$ (11) (adduct to 9).

The complexes 9–11 could be separated chromatographically. 9 forms a brown powder which is slightly soluble in hexane and readily soluble in toluene. It can be recrystallized from n-hexane at ca. -78 °C.

2.2.1. Discussion of the ¹H and ³¹P NMR data of the $P_3|P_2$ complex **9**

In the ¹H NMR spectrum one observes a singlet for the {Cp * Fe} ligand and two different sets (1:1:1:9:9) for each {Cp"Ta} group. This pattern as well as the five different ³¹P NMR signals (AMNXY spin system) reflect the asymmetric FeTa₂P₅ skeleton of **9**. The P₅ part can be divided into a P₃ unit (P_A-P_Y-P_N) and a P₂ fragment (P_M-P_X).

The proposed connectivity of the phosphorus atoms (Scheme 3) has been derived from the ³¹P NMR data of 9, comparing it with $[(Cp * Fe)(Cp''Ta)(\mu_3 - P_5){Ta(CO)_3Cp''}]$ (10), a complex with an intact P₅ chain. 9 can also be formed by photochemical decarbonylation of 10 and formal insertion of the $\{Cp''(OC)_2Ta\}$ fragment into a P-P bond.

The ${}^{1}J(P-P)$ coupling constants show meaningful trends. For example, ${}^{1}J(P_{N}-P_{Y})$ of **9** (-440.1) and ${}^{1}J(P_{M}-P_{X})$ of **10** are in a comparable range. The larger value of ${}^{1}J(P_{M}-P_{X})$ in **9** is in favour of a higher

multiple-bond character of its P_2 ligand. Less informative are the long-range coupling constants (4.6 to 25.8 Hz, Table 2). All attempts failed to obtain further information about the coordination geometry of the $P_5(P_3|P_2)$ ligand by ³¹P³¹P-COSY-45-NMR experiments.

2.3. Molecular structures of the complexes $[(Cp^*Fe)-(Cp''Ta)_2(P_5)\{Mo(CO)_5\}]$ (7) and $[(Cp^*Fe)(Cp''Ta)-\{Cp''(OC)_2Ta\}(P_3)(P_2)]$ (9)

Selected bond lengths (Å) and angles (°) are compiled in Table 3 (see also Section 3).

Fig. 2 shows the molecular structure of complex 7 with a P_5 chain ligand, Fig. 3 illustrates the molecular structure of compound 9 with a $P_3|P_2$ subunit. In Fig. 4 the FeTaP₅ skeleton of [{Cp * Fe}{Cp''Ta}(P_5)] (4) [6] is shown for comparison.

2.3.1. $[(Cp^*Fe)(Cp''Ta)_2(P_5)[Mo(CO)_5]]$ (7)

The most interesting part of complex 7 is an FeP₅ ring with flattened chair conformation capped by a {Cp" Ta} fragment on each side (Fig. 2). The Ta1 \cdots Ta2 distance in the distorted cube is 3.038(1) Å. The P₅ part of the six-membered ring shows a striking parallel to the analogous ligand in [(Cp * Fe)(Cp" Ta)(P₅)] (4) [6] (Table 4, Fig. 4). The faces of the cube are nearly parallel to each other (distortion 0.2 to 1.0°). Their sum of bond angles varies between 356.5 and 359.4°.

Besides the short (7, 2.22 Å|4, 2.15 Å) and long (2.28 Å|2.27 Å) P–P bonds, the P1 \cdots P5 distance (3.54 Å|3.60 Å) as well as the Ta–Ta distances (2.984 Å|2.85 Å) of 7 and 4 do not differ significantly (Table 4). Going from the FeTaP₅ skeleton of 4 (Fig. 4) to that of complex 7 (Fig. 2), formally, the iron atom migrates to the P1 \cdots P5 edge followed by a capping reaction of the Ta2 atom. Afterwards, Ta1 is also in a position to cap the FeP₅ ring (Fig. 2). As a consequence of these structural changes the most important differences between 7 and 4 are found for P2 \cdots P4 (7, 3.81 Å|4, 2.80 Å) and the folding angle of the P₅ 'envelope' part (7, 134.5 Å|4, 108.8°, Table 4). The mean

Table 2

¹H and ³¹P NMR data of $[(Cp * Fe)(Cp''Ta)(Cp''(OC)_2Ta)(P_3)(P_2)]$ (9) (in C₆D₆, 298 K, δ in ppm, J in Hz)

$\overline{\delta}^{1}H$	δ^{31} P	
5.88 (m, 1H), 1.40 (s, 9H)	AMNXY spin system	
5.25 (m, 1H), 1.38 (s, 9H)	689.6 (P _A , "dd", 1P; ${}^{1}J(AY) = -348.0$, ${}^{2}J(AN) = 25.8$	
5.20 (m, 1H), 1.18 (s, 9H)	299.4 (P_M , "d", 1P; $J(MX) = -473.1$, $J(AM) = 4.6$	
4.97 (m, 1H), 1.14 (s, 9H)	284.8 (P_N , "dd", 1P; ¹ J(NY) = -440.1, J(AX) = 5.3	
4.80 (m, 1H)	191.6 (P_x , ''d'', 1P; $J(MN) = 5.9$, $J(MY) = 10.2$	
4.72 (m, 1H)	69.2 (P_{Y} , "dd", 1P; $J(NX) = 14.6$, $J(XY) = 7.2$	
1.71 (s, 15H)	RMS (route mean square) 0.26	

Table 3 Selected bond lengths (Å) and angles (°) for the complexes 7 and 9 $\!\!\!\!$

$[(Cp * Fe)(Cp'' Ta)_{2}(P_{5})[Mo(CO)_{5}]](7)$			$[(Cp * Fe)(Cp'' Ta)(Cp''(OC)_2Ta)(P_3)(P_2)]$ (9)				
Fe-Ta2	2.458(2)	Fe-P1	2.225(4)	Fe-P1	2.380(3)	Fe-P2	2.256(3)
Fe-P5	2.201(5)	Ta1-P1	2.431(4)	Fe-P4	2.259(2)	Fe-P5	2.359(3)
Tal-P3	2.395(4)	Ta1-P5	2.429(5)	Ta2-P2	2.501(2)	Ta2-P3	2.483(2)
Ta2–P2	2.473(4)	Ta2-P4	2.465(4)	Ta1-P1	2.481(2)	Ta1P3	2.547(2)
P1-P2	2.220(6)	P2-P3	2.279(6)	Tal-P5	2.435(2)	Ta1Fe	2.892(1)
P3-P4	2.284(6)	P4-P5	2.216(6)	P1-P2	2.096(3)	P4-P5	2.132(3)
Tal · · · Ta2	3.038(1)	Tal · · · Fe	2.984(2)	P3-P4	2.231(3)	Ta1 · · · P2	2.600(2)
Tal · · · P2	2.829(4)	Tal · · · P4	2.798(4)	$Ta1 \cdot \cdot \cdot P4$	2.674(2)	Ta1 · · · Ta2	3.278(1)
$Ta2 \cdots P1$	2.792(4)	Ta2 · · · P3	2.776(4)	P2 · · · P3	3.31	$P2 \cdot \cdot \cdot P4$	3.11
$Ta2 \cdots P5$	2.777(4)	Mo-P3	2.539(4)	$P1 \cdot \cdot \cdot P5$	3.41		
Fe-Cp [*] _(centr.)	1.764			$Fe-Cp^*_{(centr.)}$	1.748	$Ta1-Cp''_{(centr.)}$	2.131
Tal-Cp"	2.093	Ta2-Cp"(centr.)	2.104	Ta2-Cp ["] _(centr.)	2.093	1 (colum)	
P1-Fe-P5	106.1(2)	P1-Fe-Ta2	73.00(12)	P2-Fe-P4	87.14(9)	P2-Fe-P5	112.72(9)
P5-Fe-Ta2	72,93(12)	P1-Ta1-P3	98.76(14)	P4-Fe-P5	54.93(9)	P2-FeP1	53.69(9)
P1-Ta1-P5	93.36(14)	P3-Tal-P5	99.39(13)	P4-Fe-P1	115.53(9)	P5-Fe-P1	92.11(9)
Fe-Ta2-P4	98.56(11)	Fe-Ta2-P2	98.86(11)	P2-P1-Fe	60.13(9)	P2-P1-Tal	68.63(8)
P2-Ta2-P4	101.06(14)	Fe-P1-Ta1	79.59(14)	Fe-P1-Ta1	72.99(7)	P1-P2-Fe	66.18(10)
Fe-P1-P2	114.9(2)	Tal-Pl-P2	74.8(2)	P1-P2-Ta2	130.33(12)	Fe-P2-Ta2	133.70(10)
P1-P2-Ta2	72.8(2)	P3-P2-Ta2	71.4(2)	Ta1-P3-P4	67.69(8)	Ta2P3P4	111.41(10)
P1-P2-P3	109.0(2)	P2-P3-P4	113.3(2)	P3-P4-P5	113.99(13)	Ta1-P3-Ta2	81.33(6)
P2-P3-Tal	74.4(2)	P4-P3-Tal	73.4(2)	FeP4P3	119.47(12)	Fe-P4-P5	64.91(9)
P3-P4-P5	109.7(2)	P5-P4-Ta2	72.6(2)	Ta1-P5-P4	71.32(9)	Fe-P5-Tal	74.19(7)
P3-P4-Ta2	71.4(2)	Fe-P5-Tal	80.08(14)	P4-P5-Fe	60.16(9)		
P4-P5-Ta1	73.9(2)	P4-P5-Fe	115.3(2)				

value of the P–P bond lengths (2.25 Å for 7) is in good agreement with the 2.24 Å in $[(Cp * Ti)_2(\mu-\eta^{3:3}-P_6)]$ with the same structural features; namely a P₆ chain capped by two Cp * Ti fragments [11]. The Ti · · · Ti distance (3.19 Å) is slightly longer than the Ta · · · Ta of 7 (3.04 Å).

Fig. 2. Molecular structure of $[(Cp^{+}Fe)(Cp''Ta)_2)(P_5){Mo(CO)_5}]$ (7).

According to the Wade/Mingos electron-counting rules [13], the core of 7 possesses 58 valence electrons (VE); an electron deficiency of 12 (70 VE-58). It is difficult to answer the question whether there exist metal-metal bonds between Fe \cdots Ta1 (2.984(2) Å) and Ta1 \cdots Ta2 (3.038(1) Å). For example, the Ta-Ta distance in the dinuclear complex [Cp * Ta(CO)₂(μ -Cl)]₂ is 3.062(1) Å [14] compared with the sum of the Fe/Ta covalent radii (2.50 Å); the distance Fe-Ta2 (2.458(2) Å) (Table 3) in 7 is only slightly shortened. Formally, the FeTa₂P₅ framework of 7 can be regarded as an isosce-

Fig. 3. Molecular structure of $[(Cp^*Fe)(Cp''Ta){Cp''(OC)_2}-Ta](P_1)(P_2)]$ (9).

O.J. Scherer et al. / Journal of Organometallic Chemistry 529 (1997) 379-385

Table 4 Comparable bond lengths (Å) and angles (°) for the complexes 7 and 4

[(Cp * Fe)(Cp" Ta) ₂ (P ₅){Mo(CO) ₅	}](7)	$[(Cp * Fe)(Cp'' Ta)(P_5)]$ (4) [6]		
P1-P2 P4-P5	2.221 ª	2.151 *		
P2-P3 P3-P4	2.280 ^a	2.268 ^a		
P1 · · · P5	3.537	3.602		
P2 · · · P4	3.807	2.804		
Fe · · · Tal Fe–Ta	2.984	2.854		
P ₅ envelope folding				
angle	134.5	108.8		
angle	134.5	108.8		

^a Mean value.

les $FeTa_2$ triangle which is nearly symmetrically bridged by a P_5 chain (Fig. 2).

2.4. $[(Cp^*Fe)(Cp^{"}Ta)(Cp^{"}(OC)_2Ta)(P_3)(P_3)]$ (9)

The FeTa₂P₃P₂ skeleton of **9** (cf. Fig. 3) and the FeTaP₅ core of **4** (Fig. 4) show remarkable parallels as well as differences. As expected, the P1–P2 bond of the P₂ ligand shortens to 2.096(3) Å (Table 3), whereas in **4** [6] 2.150(2) Å (Table 4) was found for the P1–P2 distance of the P₅ chain.

The cleaved $P2 \cdots P3$ bond (3.31 Å) in 9 differs distinctly from d(P2-P3) = 2.271(2) Å in the intact P₅ chain of 4. Despite the formal insertion of a $\{Cp''Ta(CO)_2\}$ fragment into the P2–P3 bond of 4 (Figs. 3 and 4), the envelope-like conformation of the five P atoms is comparable for 9 and 4. Going from 4 (acyclic P_5 ligand) to 9 ($P_3|P_2$ ligands) the folding angle P1,2,4,5|P2,3,4 expands from 108.8° in 4 to 115.1° in 9. Interestingly, for the P_2 unit of complex 9 the rare $\mu_3 - \eta^{2:1:1} - E_2$ (E = P, As) coordination mode was found; it has been realized for the first time in [(Cp * Co)₃(µ- $\eta^{2:2}$ -As₂)(μ_3 - $\eta^{2:1:1}$ -As₂)₂] [15] (cf. [(Cp * Co)₃P₆] [16]). The most intriguing structural part of complex 9 is the acyclic P₃ ligand. Nearly the same trend in P-P bond lengths (9, P3–P4 = 2.231(3), P4–P5 = 2.132(3) Å) was found in [(Cp * Mo)₂(μ - $\eta^{2:2}$ -PS)(μ_3 - $\eta^{3:3:1}$ -P₃){Cr(CO)₅}] (12) [17] $(d(P_3) = 2.286(6) \text{ Å} | 2.109(7) \text{ Å})$, the only other compound where, to the best of our knowledge, an acyclic, substituent-free P₃ ligand has been realized. The PPP bond angles differ by 6.2° (9, 113.99(13)°; 12, 107.8(2)°).

Fig. 4. FeTaP₅ skeleton of $[(Cp * Fe)(Cp'' Ta)P_5]$ (4) [6]. Cp * and Cp'' ligands have been omitted.

The coordination mode of the acyclic P_3 ligand in complex 9 (Fig. 3) is very unusual. Besides an η^2 (P4-P5), one terminal (P5-Ta1) and one bridging (P3-Ta1,2) coordination can be derived. The ligand should be described as μ_3 - $\eta^{2:1:1:1}$ -P₃. Whereas Fe-Ta1 = 2.892(1)Å differs only slightly from the comparable Fe-Ta bond length (2.854(1)Å) in 4 [6], the distances Ta1 \cdots P2 = 2.600(2) and Ta1 \cdots P4 = 2.674(2)Å (face diagonals) are distinctly longer in 4 (mean value 2.75Å, cf. Figs. 3 and 4) than in 9.

A further interesting parallel to **9** was found for the dinuclear complex [{(tripod)Co}₂(μ - $\eta^{3:3}$ -P₃Et)][BF₄]₂, where for the first time the coordinative stabilization of EtP₃, the all-phosphorus analogue of EtN₃ (ethyl azide), has been realized [3]. Ab initio calculations on P₃⁻ (16 VE), the phosphorus analogue of the azide ion N₃⁻ (16 VE), show that the bent P₃⁻ isomer differs energetically only slightly from the linear one [18].

3. Experimental details

All experiments were carried out under an argon atmosphere in dry solvents. $[Cp^* FeP_5]$ (1) [19], $[Cp'' Ta(CO)_4]$ (2) [20] and $[(Cp^* Fe)(Cp'' Ta)(P_5)]$ (4) [6] were prepared as described in the literature. ¹H and ³¹P NMR spectra were measured on a Bruker AC 200 or AMX 400 (¹H: C₆D₅H = 7.20 ppm or C₆D₅CD₂H = 2.30 ppm as internal standard; ³¹P: 85% H₃PO₄ as external standard). Simulation and iteration of the spectra were carried out with PERCH-NMR software [21]. IR spectra were recorded on a Perkin–Elmer 881. UVirradiation: 150 W Hg high-pressure lamp, TQ 150, Heraeus Quarzlampen GmbH, Hanau.

3.1. Syntheses of the complexes 3a,b, 4, 5 and 6

1.655 g (3.519 mmol) 2 and 0.409 g (1.182 mmol) 1, each dissolved in ca. 5 ml decalin, were added to a 250 ml three-necked flask filled with 120 ml decalin and heated to reflux with stirring. During the reaction (6 h) the colour changed from yellow-green to black-brown. After evaporation of the solvent under oil-pump vacuum the residue was dissolved in ca. 10 ml dichloromethane, ca. I g of silica gel was added and the mixture was concentrated until it was free-flowing. Column chromatography (column $27 \times 1.5 \text{ cm}^2$, SiO₂, petroleum ether) afforded, with petroleum ether|toluene (25:1), 161 mg (10%) unreacted yellow 2. Afterwards (mixture 15:1), 30 mg (2% based on 1) $[(Cp''Ta)_{4}(P_{2})_{2}]$ (6) [9] was eluted as a grey-violet zone. Petrolether toluene (10:1) gave 29 mg (4% based on 1) olive-green $[(Cp''Fe)(Cp''Ta)(P_5)]$ (4) [6], followed by an 8:1 mixture which provides 41 mg (3% based on 1) green $[Cp''Ta)_{3}(P_{4})(P_{2})]$ (5) [8]. Finally, petrolether toluene (5:1 to 2:1) eluted 525 mg (42% based on 1) blackbrown equilibrium mixture $[(Cp * Fe)(Cp'' Ta), P_5](3a,b),$ which was recrystallized from a saturated n-hexaneldichloromethane solution at -78 °C. Anal. Found: C, 39.61; H, 5.32. C₃₆H₅₇FeP₅Ta₂ Calc.: C, 40.70; H, 5.41%.

3.2. Synthesis of $[(Cp^*Fe)(Cp^{''}Ta)_2(P_5)[Mo(CO)_5]]$ (7)

A solution of [Mo(CO)₅(thf)], prepared from 263 mg (1.00 mmol) [Mo(CO)₆] by irradiation (30 min in a UV apparatus) in 70 ml THF, was added at room temperature with stirring to a solution of 259 mg (0.244 mmol) **3a,b** in ca. 10 ml THF (100 ml flask) and stirred for 20 h at room temperature. Afterwards, the solvent was evaporated under oil-pump vacuum, the residue was dissolved in ca. 5 ml dichloromethane, ca. 1 g of silica gel was added, and the mixture was concentrated until it was free-flowing. Column chromatography (column 20 $\times 2 \,\mathrm{cm}^2$, SiO₂, petroleum ether) gave, with petroleum ether toluene (20:1), a small yellow zone ([Mo(CO)₆]). Petroleum ether toluene (5:1) eluted 149 mg (47% based on **3a**,**b**) green-brown 7, which was recrystallized from n-hexane at -78°C. Anal. Found: C, 36.93; H, 4.41. C₄₁H₅₇MoO₅P₅Ta₂ Calc.: C, 37.93; H, 4.42%.

3.3. Synthesis of $[(Cp^*Fe)(Cp^{''}Ta)(Cp^{''}(OC)_2Ta] - (P_3)(P_2)]$ (9)

3.3.1. $[Cp''Ta(CO)_2(cod)]$ (8)

313 mg (0.666 mmol) $[Cp''Ta(CO)_4]$ (2) and 704 mg (6.47 mmol) cyclooctadiene (COD), dissolved in 50 ml toluene, were irradiated (UV apparatus) in a 70 ml apparatus. After 50 min IR spectroscopically exclusively the CO bands of **8**, which was handled only in solution, could be detected.

Starting with 299 mg (0.618 mmol) 2 and 704 mg (6.47 mmol = 0.8 ml) COD in ca. 50 ml toluene its cophotolysis provided a solution of 8 (IR: v(CO) = 1974(s), 1866(s)). Afterwards, 220 mg (0.312 mmol) of [(Cp * Fe)(Cp"Ta)(P₅)] (4) in 5 ml toluene was added and this solution was stirred for ca. 5 h until the IR-CO bands of 9 (1954(s), 1895(s)) attained a maximum. After evaporation of the solvents under oil-pump vacuum the residue was dissolved in ca. 10 ml

dichloromethane, ca. 1g of silvlated silica gel was added, and the mixture was concentrated until it was free-flowing. Column chromatography (column $28 \times$ $1.5 \,\mathrm{cm}^2$, SiO₂, petroleum ether), starting with petroleum ether|toluene (20:1), gave, with a 3:1 mixture, traces of 4, followed by 21 mg (6% based on 4) orange-brown mono-adduct [(Cp * Fe)(Cp'' Ta)(μ_3 -P₅){Ta(CO)₃Cp''}] (10) [10]. Further elution led to 19 mg (4% based on 4) $[(Cp * Fe)(Cp''Ta){Cp''(OC),Ta}$ dark-grey $(P_3)(P_2){Ta(CO)_3Cp''}$ (11) [10], the {Ta(CO)_3Cp''} adduct of 9. A petroleum ether toluene mixture of 2:1 eluted 282 mg (81% based on 4) brown 9, which can be recrystallized from n-hexane at -78 °C. Anal. Found: C, 40.52; H, 5.21. C₃₈H₅₇FeO₂P₅Ta₂ Calc.: C, 40.81; H, 5.14%.

3.4. X-ray crystal structure determinations of 7 and 9

Crystal data for **7** [**9**]: $C_{41}H_{57}FeMoO_5P_5Ta_2$ [$C_{38}H_{57}FeO_2P_5Ta_2$]; $M_r = 1298.4$ [1118.4]; monoclinic; space group $P2_1/c$ [$P2_1/n$]; a = 12.607(3)[12.343(2) Å], b = 17.0479(10) [21.987(2) Å], c =23.126(5) [15.6140(10) Å]; $\beta = 102.469(10)$ [99.000(10)°]; V = 4853.1(14) [4185.2(8) Å³]; Z = 4; D_c = 1.777 [1.775 g cm⁻³]; μ (Mo K α) = 52.43 [57.80 cm⁻¹]; measured reflections 11293 [11453], independent reflections 10505 [9579], R(int) = 0.0615[0.0477], refined parameters 518 [455]; diffractometers Enraf–Nonius CAD4 [Siemens P4]; T 293 [183 K]; θ range 2.04–26.94° [2.17–27.50°]; $R_1 = 0.1629$ [0.1041], $wR_2 = 0.1482$ [0.0864] (all data, refinement according to F^2). Structure solution by direct methods, SHELXS-86 [SIR 92].

Further details of the X-ray structure determinations may be obtained from the Fachinformationszentrum Karlsruhe GmbH, D-76344 Eggenstein-Leopoldshafen, Germany on quoting the depository numbers CSD-405320 and CSD-405321, the names of the authors and the journal citation.

Acknowledgements

We thank the Fonds der Chemischen Industrie and the Graduiertenkolleg 'Phosphorus Chemistry as a Link Between Different Chemical Disciplines' for financial support. The help of Dr. K. Öfele, TU München, in preparing $[Cp''Ta(CO)_4]$ is gratefully acknowledged.

References

- O.J. Scherer, Angew. Chem., 102 (1990) 1137; Angew. Chem., Int. Ed. Engl., 29 (1990) 1104; M. Scheer and E. Herrmann, Z. Chem., 30 (1990) 41.
- [2] M. Di Vaira, P. Stoppioni and M. Peruzzini, *Polyhedron*, 6 (1987) 35.

- [3] A. Barth, G. Huttner, M. Fritz and L. Zsolnai, Angew. Chem., 102 (1990) 956; Angew. Chem., Int. Ed. Engl., 29 (1990) 929.
- [4] M. Scheer, U. Becker, M.H. Chisholm, J.C. Huffman, F. Lemoigno and O. Eisenstein, *Inorg. Chem.*, 34 (1995) 3117.
- [5] O.J. Scherer, G. Schwarz and G. Wolmershäuser, Z. Anorg. Allg. Chem., 622 (1996) 951.
- [6] M. Detzel, T. Mohr, O.J. Scherer and G. Wolmershäuser, Angew. Chem., 106 (1994) 1142; Angew. Chem., Int. Ed. Engl., 33 (1994) 1110.
- [7] A.C. Reddy, E.D. Jemmis, O.J. Scherer, R. Winter, G. Heckmann and G. Wolmershäuser, Organometallics, 11 (1992) 3894.
- [8] O.J. Scherer, R. Winter and G. Wolmershäuser, J. Chem. Soc., Chem. Commun., (1993) 313.
- [9] T. Mohr, O.J. Scherer and G. Wolmershäuser, in preparation; cf. [{CpV}₄(P₃)₂] M. Herberhold, G. Frohmader and W. Milius, *Phosphorus, Sulfur, and Silicon*, 93/94 (1994) 205.
- [10] T. Mohr, *Thesis*, University of Kaiserslautern, 1996 (unpublished).
- [11] O.J. Scherer, H. Swarowsky, G. Wolmershäuser, W. Kaim and S. Kohlmann, Angew. Chem., 99 (1987) 1178; Angew. Chem., Int. Ed. Engl., 26 (1987) 1153.

- [12] O.J. Scherer, J. Braun and G. Wolmershäuser, *Chem. Ber.*, *123* (1990) 471.
- [13] K. Wade, Adv. Inorg. Chem., 18 (1976) 1; D.M.P. Mingos and R.L. Johnston, Struct. Bond., 68 (1987) 29.
- [14] D. Kwon, J. Real, M.D. Curtis, A. Rheingold and B.S. Haggerty, Organometallics, 10 (1991) 143.
- [15] O.J. Scherer, K. Pfeiffer, G. Heckmann and G. Wolmershäuser, J. Organomet. Chem., 425 (1992) 141.
- [16] R. Ahlrichs, D. Fenske, K. Fromm, H. Krautscheid, U. Krautscheid and O. Treutler, *Chem. Eur. J.*, 2 (1996) 237.
- [17] H. Brunner, U. Klement, W. Meier, J. Wachter, O. Serhadle and M.L. Ziegler, J. Organomet. Chem., 335 (1987) 339.
- [18] J.K. Burdett and C.J. Marsden, New J. Chem., 12 (1988) 797.
- [19] M. Detzel, G. Friedrich, O.J. Scherer and G. Wolmershäuser, Angew. Chem., 107 (1995) 1454; Angew. Chem., Int. Ed. Engl., 34 (1995) 1321.
- [20] O.J. Scherer, R. Winter and G. Wolmershäuser, Z. Anorg. Allg. Chem., 619 (1993) 827.
- [21] R. Laatikainen and M. Niemitz, PERCH-NMR Software, University of Kuopio, Finland, 1995.